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The kinetic theory for dense gases is modified to take into account the existence 
of bound states. A molecular chaos condition is used which corresponds to the 
division of the two- and three-particle Hilbert spaces into scattering and bound- 
state subspaces. A kinetic stage results from a long-time limit which converges to 
yield time-independent functionals for the two- and three-particle density matri- 
ces, as functionals of the density matrices for atoms and molecules. Coupled 
kinetic equations are obtained which describe the gas as a reacting mixture of 
atoms and diatomic molecules. These include the effects of scattering and 
rearrangement collisions between the atom and the molecule, and of molecular 
formation and dissociation. 
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gases; reactions. 

1. I N T R O D U C T I O N  

The  s t a n d a r d  a p p r o a c h  to the der iva t ion  of the kinet ic  equa t ion  for a dense 
m o n a t o m i c  gas conta ins  two elements.  2 One  is the B B G K Y  h ie ra rchy  for  
the r educed  d is t r ibu t ion  funct ions  F s of o rde r  s, s -- 1, 2, 3 . . . .  The  second  
e lement  is a func t iona l  a s sumpt ion  due  to Bogol iubov,  accord ing  to which 
the h igher -order  d i s t r ibu t ion  funct ions  are  de t e rmined  as t ime- independen t  
funct ionals  of F 1 ( that  is, they d e p e n d  on t ime only  th rough  their  depen-  
dence on  F1).  W h e n  these funct ionals  are  subs t i tu ted  into the h ierarchy,  the 
result  is a c losed equa t ion  for  F 1, which is the kinet ic  equat ion.  The  
func t iona l  re la t ions  can  be  worked  out  expl ic i t ly  only  as series in powers  of 
the density,  a n d  so the kinet ic  equa t ion  is also o b t a i n e d  as such a series. To 
lowest  o rde r  in the dens i ty  this equa t ion  is the Bo l t zmann  equat ion,  with a 
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modification due to the difference in position of the two colliding particles. 
Corrections to the (modified) Boltzmann equation are then obtained by 
continuing the procedure to higher order in the density. 

Actually the straightforward density expansion must be modified be- 
cause of a divergence which occurs in the third order; the time-independent 
functional for F 2 does not exist for functions F 1 of interest because of the 
large volume of phase space available to a four-body collision. For repul- 
sive forces the nature of this divergence and methods to deal with it are by 
now well understood. (~) Here we will only consider the second order, and 
so our calculations are not affected by the divergence. 

If the forces are attractive, particularly if the particles can form bound 
states, it is necessary to modify the procedure as outlined above. The 
necessary modifications will be discussed in this paper, with the purpose of 
developing a procedure applicable to polyatomic gases. The analysis will be 
quantum mechanical, so the F s are actually density matrices rather than 
distribution functions. 

In a polyatomic gas the density matrices for the atoms and molecules 
of various kinds should be independent, that is, it should be possible to 
assign initial values to them independently. Their time dependence would 
then be governed by a coupled set of kinetic equations. Thus the assump- 
tion that all density matrices are determined by F ~ is clearly too restrictive. 
Instead the higher-order F s should depend on a basic set consisting of 
density matrices for the various chemical species which occur. This basic 
set itself should be constructed from the F s which appear in the hierarchy. 

For repulsive forces, the time-independent functionals are obtained by 
first imposing the molecular chaos condition that F ~ be a product of F ~'s at 
an initial time t o. The solution to the hierarchy yields F s at a later time t, 
which can be expressed in terms of F 1 at time t. The initial time t o is then 
moved back into the infinite past. When bound states are present, this 
procedure breaks down because the long-time limit does not exist. Here the 
molecular chaos condition is modified in such a way that the resulting 
long-time limit is convergent. For F 2, only its part acting in the subspace of 
free particles is written as a product of Fl 's,  and the remainder is the 
density matrix for bound pairs (including bound-to-free mixing). Similarly 
F 3 is projected onto subspaces corresponding to the channels in the 
three-body problem, and each part is written as a product of density 
matrices for the atoms and /o r  molecules present in the channel; a remain- 
ing part is due to channel mixing and three-body bound states. The 
long-time limit leading to the time-independent functionals for F 2 and F 3 is 
then convergent. Density matrices f l  and f2 for atoms and diatomic 
molecules are defined in terms of the F ~, and the time-independent func- 
tionals yield coupled kinetic equations for f l  and f2. These contain collision 
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operators which include (in addition to the lowest-order binary collision 
part) contributions from the different three-body channels, namely, three- 
particle scattering, collision-induced dissociation and formation of a di- 
atomic molecule, and scattering (including rearrangement collisions) be- 
tween an atom and a diatomic molecule. 

In other work on polyatomic gases, a modified Boltzmann equation 
which includes inelastic collisions was discussed by Wang-Chang, Uhlen- 
beck, and de Boer, (2) who assumed the distribution function to be a 
function of the internal molecular quantum numbers. Their theory was 
generalized by Waldmann (3) and Snider, (4~ who took the distribution 
function to be a density matrix in the internal molecular states; the 
resulting kinetic equation is commonly called the Waldmann-Snider equa- 
tion. 3 The Waldmann-Snider equation was derived by assuming the den- 
sity matrix to be diagonal in the molecular energies, but this restriction has 
been removed by Snider and Sanctuary. (6) Reactions have been considered 
by Lowry and Snider (7) and by Olmsted and Curtiss. (s) In classical 
mechanics the effect of attractive forces has been discussed by several 
authors, including Kawasaki and Oppenheim, (9) Kim and Ross, (1~ Davis, 
Rice, and Sengers, (~1) Dufty and Gubbins, (12) and Marchetti and Dufty. (13) 
The classical Boltzmann equation for a polyatomic gas has been discussed 
by a number of authors; a recent paper by Curtiss (~4) contains references to 
earlier work. 

Previous discussions of polyatomic gases have all involved approxima- 
tions of one kind or another. Usually the density expansion is not carried 
out consistently, but instead some terms occurring at a given order in the 
density are neglected while others are retained. Frequently special assump- 
tions regarding the form of the molecular density matrix are introduced, 
such as the diagonality assumptions in the work leading to the Waldmann- 
Snider equation. The approach given below follows the standard treat- 
ment (l) of monatomic gases (including that of Resibois (15) for the quantum 
mechanical case) by developing the density expansion consistently. Further- 
more no special assumptions regarding the form of the molecular density 
matrix are introduced. 

The basic units which comprise the system will be called particles, and 
a particle which is not bound into a molecule will be called an atom. 

2. H I E R A R C H Y  A N D  F U N C T I O N A L  A S S U M P T I O N  

Consider a quantum mechanical system of N identical particles obey- 
ing Boltzmann statistics and interacting by two-body forces. The reduced 

3 The Waldmann-Snider equation has been reviewed in Ref. 5. 
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density matrix F ~ for a subset of s particles, say, particles numbered 
1 . . . . .  s, is defined in terms of the N-particle density matrix F u by 

FS(1 . . . . .  s) = V~Tr(s + 1 . . . . .  N)FN(1 . . . . .  N )  (1) 

Here V is the volume and Tr denotes the trace, with the particles traced 
over being denoted by the numbers in parentheses. The time dependence of 
F N is determined by 

aFN/~t + (FN, HN } = 0 (2) 

where H u is the Hamiltonian for the N-particle system. Here curly brackets 
are defined by 

( ,  } = ( 1 / i h ) [ ,  ] (3) 

where square brackets denote the commutator, and h = h/2~r where h is 
Planck's constant. For brevity in the following we will use units such that 
h = l .  

Equation (2) implies the BBGKY hierarchy of equations for the time 
dependence of the Fq  In the thermodynamic limit ( V ~  ~ with n = N / V  
held fixed) the hierarchy is 4 

~ r ' / ~ t  + {F',H1} = nTr(2){v,2,F 2) 

aF2/Ot + {F2, H2) = nTr(3){v3,F 3} (4) 

aF3/Ot + (F3,H3} = l'lTr(n)(v4, F4}, etc. 

Here H~ is the Hamiltonian for a set of s particles, 

/-is = n o  + vo (5) 

where H o denotes the Hamiltonian for free motion; the number of particles 
in H o will not be indicated explicitly as it can usually be determined from 
context. The potential energy for a pair a has been denoted by v~, and the 
sum extends over all pairs which can be formed in the set of s particles. The 
particles to which F s refer have not been indicated explicitly; F l refers to 
particle number 1, F 2 to particles 1 and 2, etc. In addition we have 
introduced the abbreviations 

= t)4 ~314 -1- 1224 "Jr- !234 (6) I) 3 '/913 + 1)23~ .~- 

The initial-value problem for the hierarchy can be solved by an 
expansion in powers of the density n. To the order needed here, the 

4The hierarchy and functional assumption in quantum mechanics have been discussed 
recently by Boercker and Dufty (Ref. 16). 
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solution is (17) 

FI(1, t) = $1(1, t ' )F ' (1 ,  to) 

+ n Tr(2) [ $2(1,2, t') - So(l, 2, t') ] F2(1, 2, to) + . . -  

r2(1,2,  t) = $2(1,2, t ' ) r2(1,2,  to) + n Tr(3) (7) 

• [$3(1,2,3, t' ) - S(,2)(1,2,3, t ' )]F3(1,2,3,  to) + . . .  

F3(1,2,3, t) = S3(1,2,3, t ' )F3(1,2,3, to) + . . .  

Here t ' =  t - t o and S s denotes a streaming operator defined by 

Ss(t)F s= Us(t)FSUs*(t), Us(t ) = e - i H s t  (8) 
where the asterisk denotes the adjoint (on the s-particle Hilbert space). In 
addition S O is the free streaming operator, 

So(t)F s= Uo(t)FsU~)(t), Uo(t ) = e - i H ~  (9) 

while S(.) is the streaming operator for a system of three particles in which 
only the pair a interacts, 

S( . ) ( t )F 3= V(.)(t)F3U~.)(t),  U(~)(t) = e -i1-I`~ (10) 

Here H(.)  is given by 

H(.)  = H o + v, (11) 

The usual derivation of the Boltzmann equation proceeds as follows. 
At an initial time to, suppose F 2 has the form corresponding to molecular 
chaos, 

F z(1, 2, to) = F ' (1 ,  to)F](2, to) (12) 

Then at a later time t, F 2 is, to lowest order in the density, 

F2(1,2, t) = U2(1,2, t ' )F'(1, to)Fl(2,  to)U~(1,2,t ') (13) 

From the first of Eqs. (7) we obtain to lowest order in n 

r l (1 , to)r I (2 , to)  = UJ(1,2, t ' )F ' (1 , t )Fl(2 ,  t)Uo(1,2,t  ') (14) 

so 

F2(1,2,t)  = U2(l ,2 , t ' )UJ(1 ,2 , t ' )F](1 , t )F ' (2 ,  t )Uo(1,2, t ' )U~(l ,2,  t ') (15) 

If the limit for t' ~ oo exists, it yields F 2 as a time-independent functional 
of F 1, 

F2(1,2) = lim U2(1,2, t ')U~(1,2, t ' )F~(1)FI(2)Uo(1,2,  t ')U~(1,2, t ') (16) 
l'---~ O9 
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For a wide class of potentials, it is known that the limit 

o~ = lim U2(t)U~(t) (17) 
t---~ oo 

exists as a strong limit; ~o is known as the wave operator. 5 (Actually there 
are two wave operators; the one of interest here is the one usually denoted 
by a subscript +.)  It follows from the unitarity of U2 and U 0 that o~ is 
isometric: 

o~*~0--- 1 (18) 

If the potential does not support bound states, then 

0~* = lim Uo(t)U~(t ) (19) 
t---~ oo 

where the limit on the right also exists as a strong limit, and we have 

~o~0" = 1 (20) 

In this case Eq. (16) can be written as 

F2(1, 2) = o~,2F'(1)F'(2)w~' 2 (21) 

where the subscripts on o~12 denote the particles on which it acts. (Here we 
have used the fact that for strong limits, the limit of a product equals the 
product of the limits provided the latter exist.) Substitution of this expres- 
sion into the first equation of the hierarchy yields 

o r l /~ t  + (F1,H1) = nJo[r 1] (22) 

where 

Jo[ r l ]  = Tr(2) { v,2, o~12Fl(1)rl(2)o~'2) (23) 

For the spatially homogeneous case, Jo can be reduced to the Boltzmann 
collision operator. If F ~ is not spatially homogeneous, then J0 is a modified 
Boltzmann collision operator which takes into account the difference in 
position of the two colliding particles. 

The manipulations leading to Eq. (22) can be extended to higher order 
in a straightforward manner. The time-independent functional (21) be- 
comes a series in powers of n, and the first hierarchy equation yields 

OF1/Ot + (F ' ,H , )  = nJ[F 1] (24) 

where 

J =  Jo +n  J1 + "'" (25) 

However, at the third order it is found that the time-independent functional 

5 For a derivation of the basic properties of wave operators see Ref. 18. 



Kinetic Equations for a Quantum Gas with Bound States 527 

actually does not exist (for F 1 of interest) because of the large extent in 
space and time of four-body collisions. Hence, as mentioned in the Intro- 
duction, the straightforward density expansion must be modified. Here we 
will be concerned only with the order corresponding to J], and so the 
divergence has no effect on our discussion. 

Now suppose there are two-body bound states. Then Eq. (20) is 
replaced by 

wo~* = 1 - P ( 2 6 )  

where P is the projection onto the subspace of bound states. (For simplicity 
we will assume there to be only one bound state, so P is a one-dimensional 
projection.) It follows from Eqs. (18) and (26) that 

~ * e  = P ~  = 0 ( 2 7 )  

The limit in Eq. (19) does not exist except on the range of w, where 

lim Uo(t)U~(t)o~= 1 (28) 
t---) oo 

However, F 2 is not restricted to the subspace orthogonal to P, and so we 
cannot take the limit in Eq. (16) to obtain Eq. (21). 

One symptom of nonexistence of the long-time limit is the failure of 
the result (21) in equilibrium. In equilibrium F 1 is, to lowest order in the 
density, 

F 1 = Vo e -  ~H~ (29) 

Here/3 = 1/kT, where k is Boltzmann's constant and T the Kelvin temper- 
ature, while Vo is the de Boer parameter, 

1io = h3[ 2~rmkT]-3/2 (30) 

where m is the mass of a particle. The intertwining relation for ~ is 

o~H 0 = H2o~ (31) 

Equation (21) then yields for F 2 (to lowest order) 

F 2= I/~e-~Z42(1 - P )  (32) 

whereas the correct equilibrium formula for F 2 ( to  lowest order) is 

r 2= V2e -Btl2 (33) 

Thus the result (21) projects out the bound-state part of F 2. 
Curiously the usual Bogoliubov functional assumption [that is, Eq. (21) 

extended to higher order in the density, together with similar formulas for 
the higher-order F s] still yields a formal solution to the hierarchy even 
when bound states exist. This can be verified by substituting it into the 
hierarchy and using the intertwining relations for the wave operators. 
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However, this solution is likely to be unstable since it does not arise as a 
long-time limit. 

3. FUNCTIONAL ASSUMPTION WITH BOUND STATES 

It is readily shown that o~o~* is a projection, 

(oxo*)a = ~o~* (34) 

indeed it is the projection onto scattering states (i.e., states which are 
orthogonal to the bound states). Hence we may decompose any F 2 into a 
part which acts entirely in the subspace of scattering states plus a remain- 
der by 

F 2 = r * + D (35) 

Then D can be obtained from F 2 by 

D = / ; r  2 (36) 

where ff is a projection on two-particle density matrices defined by 

/ ;F 2 = V 2 - ox0*F2o~r * = F 2 - (1 - p)F2(1 - P )  (37) 

Clearly D is to be interpreted as the density matrix for diatomic molecules 
(or actually the lowest-order approximation to the latter). Note, however, 
that it need not act entirely in the subspace of bound states, that is, it is not 
necessarily the case that D = PDP. However, 

(1 - P ) D ( 1  - P )  = 0 (38)  

We now impose the molecular chaos condition (12) only to the 
projection of F 2 on the scattering subspace. Thus we assume at time t o 

F2(1, 2, to) = w1260~2F'(1, to)F'(2, to)wl2tO~2 q- D(1, 2, to) (39) 

To lowest order in the density, F 2 satisfies 

3F2/3t + (FZ, H2} = 0 (40) 

It follows from Eq. (36) that D satisfies the same equation, 

3D/3t + {D, H2) = 0 (41) 

Hence 

D(t) = U2(t')D(to)U~(t' ) (42) 

where again t' = t - t 0. Equation (15) is therefore replaced by 

F2(1,2, t) = ~,2~o~2 U2(t' ) U~(t')F'(1, t)F'(2, t) Uo(t') U~ (t')0~,2o~2 

+ D(1,2, t) (43) 
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To obtain this form we have used the fact that H 2 commutes with ~0w*. We 
can now take the limit t ' ~  m, and the result is 

F2(1,2) = w12Fl(1)Ft(2)~o'~2 + D(1,2) (44) 

Substitution of Eq. (44) into the first equation of the hierarchy yields 

~Fl /~ t  + {FI,H~} = nTr(2){v12,w12Fl(1)Fl(2)w~2 + D } (45) 

Equation (41) enables us to rewrite this in a more convenient form, 

Of]/Ot + { f l ,H1)  = nJo[ f  I ] (46) 

where 

f ' (1 )  = F ~ ( 1 ) -  nTr(2)D(1,2) (47) 

On the right-hand side of Eq. (46) the difference between F 1 and f l  has 
been neglected since it is higher order in the density. 

Clearly f~ is to be interpreted as the density matrix for atoms; the 
second term in Eq. (47) subtracts from F 1 the contribution of particles 
which are bound into molecules. Equation (46) is then the (modified) 
Boltzmann equation for atoms, while D satisfies the collisionless Eq. (41). 

The introduction of D provides the freedom needed to satisfy the 
equilibrium relation between F 1 and F2; in equilibrium we have 

D = Vge-BH2P (48) 

In general f l  and D are to be treated as independent quantities. 

4. T H R E E - P A R T I C L E  T E R M S  

The existence of two-body bound states splits the three-body problem 
into channels. 6 There are three channels corresponding to the scattering 
(and reactions) of a two-body bound pair (i.e., a diatomic molecule) with 
the third particle, and a fourth channel in which the three particles are 
initially unbound. The corresponding wave operators are defined by 

f~, = lira U3(t ) U~)(t)P, 
(49) 

f~0 = lira U3(t ) US(t) 

Here P, is the projection onto the bound state for pair a, but considered 
now as an operator on the three-particle Hilbert space. 

The wave operators satisfy 

~*~B = 8~P~,  ~ 8 ~  = 0, ~8~0 = 1 (50) 

6 See Ref. 19 for some useful references to the three-body problem. See also the book by Reed 
and Simon cited in Ref. 18. 
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It follows that ~2o9 ~ and f~2* are orthogonal projections; they project onto 
the channel subspaces. In addition they satisfy 

9o~2 J + ~-~ 9~2" = 1 - Q (51) 
t~ 

where Q is the projection onto three-body bound states. It follows from the 
above equations that 

9~Q = Qfl0 = 9*Q = Qa~ = 0 (52) 

The intertwining relations are 

H39 ~ = 9~H(~), H3f~ 0 = f~0H0 (53) 

As a consequence of the intertwining relations, H a commutes with 90f~ J 
and 9~9". 

If the adjoint of the product of operators in Eq. (49) is taken, the limits 
do not exist on the full Hilbert space. However, they do exist on the ranges 
of the corresponding wave operators, that is, 

limP~ U(~)(t) U ~ ( t ) ~  = P~ 
(54) 

lim Uo(t) U~(t)9 o = 1 

exist as strong limits. 
In analogy to Eq. (35) we may write any F 3 as a sum of parts which 

act in the channel subspaces plus a remainder, 

F3 = ~o9~F3~o~ + E 9~9~F f ~  + T (55) 
tx 

As the molecular chaos condition we require that at time t o the part of F 3 
acting in a channel subspace be a product of the density matrices for the 
atoms and molecules in the channel, 

F3(1,2, 3, to) = 9o9~ G(1, 2, 3, to)9o9 ~ 

+ 2a.a* Fl(, ,to)V(a, to)a a* + T(1,2,3,t0) (56) 

Here for brevity a has been used to denote both a particle and a pair so for 
example a = 1, 2 (or a = 3) means pair 1,2 as well as particle number 3. In 
addition G is the abbreviation 

G(1,2, 3) = F~(1)FI(Z)FI(3) (57) 

It follows from Eq. (55) that T satisfies 

a~ 7"90 = a~* r a ~  = 0 (58) 

We will interpret T as the density matrix for triatomic molecules. However, 
it is possible that T contains terms which mix channels, since it does not 
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follow 
necessary to retain T even in the absence of three-body bound states. 

To lowest order in the density F 3 satisfies 

OF3/Ot + (F3, H3} --0 (59) 

and it follows that T satisfies the same equation, 

OTlOt + { T, H3} = 0 (60) 

Hence 

F3(t) = U3(t')F3(to)U~(t'), T(t) = U3(t')T(to)U~(t' ) (61) 

In addition we have 

O(to) = v (c)o(t)Uo(C) 
(62) 

g l (a ,  to)D(a, to) = U~)(t ')r '(a, t)D(a, t) U(.)(t') 

The molecular chaos condition (56) yields 

F3(I, 2, 3, t) = aoa ~ U3(t')U~(t')G(1, 2, 3, t) Uo(t')U~(t')~of~ ~ 

" ~ - X  * t , t 1 ~ U3(t )U~)(t )F (a,t)D(a,t)  
ol  

! , t , x U(~)(t)U~(t)~2~2, + T(1,2,3,t) (63) 

Taking the limit t'-~ oc, we obtain the time-independent functional for F 3, 

F3(1,2,3) = f~0G(1,2,3)~8 + ~,~ ,Fl (a)D(a)a*+ T(1,2,3) (64) 

To confirm the validity of Eq. (64) in equilibrium, we insert Eqs. (29) 
and (48). Using Eq. (51), we get 

F 3 = V3e-B~I3(1 - Q) + T (65) 

The equilibrium formula for F 3 (to lowest order in the density) is 

F 3= V3o e-B143 (66) 

so in equilibrium T has the expected form 

T= V~e-r (67) 

The kinetic equation for D is obtained by substituting Eq. (64) into the 
second equation of the hierarchy and using Eq. (36) for D. The result is 

OD/~t + {D, H2} = nTr(3)/7 {v3,~2oG~ + ~2~Fl (a )D(a )~  * + T} 
ot  

(68) 

from Eq. (55) that, e.g., f~ 'Tf~ must vanish. Thus it may be 
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Using Eq. (60) we rewrite this as 

~f2/Ot + {f2,H2} = nR[ f l] + nS[ fi, f 2] (69) 

where 

f 2 =  D - n Tr(3)/~T (70) 

and R, S are collision operators defined by 

R[ f I ] = Tr(3)ff (v ,aoCa } 
(71) 

Here G can be written wi th f  1 instead of F 1, 

G(1, 2, 3) = f'(1)f~(2)fl(3) (72) 

since the difference is higher order in the density. In the above expression 
for S the difference between f2 and D, and between f l  and F l, has been 
neglected for the same reason. The collision operator R gives the rate of 
change of the density matrix for diatomic molecules due to formation and 
breakup, while S describes scattering (including rearrangement collisions) 
between an atom and a diatomic molecule. Clearly f2 is the density matrix 
for diatomic molecules, and differs from D by a correction for pairs which 
are bound into triatomic molecules. 

To include atom-molecule collisions in the kinetic equation for f~ it is 
necessary to extend the functional assumption (44) for F 2 to the next order 
in the density. We use the same molecular chaos condition (39) but include 
density-dependent corrections in the equations for the time dependence of 
F 1 and F 2. A calculation which is summarized in the Appendix then yields 
the time-independent functional for F 2, 

F2(1,2) = c012fl(1)/l(2)to~'2 + f2(1,2) + n Tr(3)T(1,2, 3) + n Tr(3)(1 -/~12) 

x (aoG(1,2, 3)a~ 

- 60,2[w,3G(1,2, 3)~o~3 + ~23G(1, 2, 3)~0~ - G(1,2,3)]~0 h 

+ ~_,a~Fl(e~)D(e~)a * } (73) 

This is to be inserted into the first equation of the hierarchy, and we get 

8F'/St + { F ' ,H,}  = nJo[ f '  ] + n2J,[ f '] 

+ n2Tr(2,3){ Vl2, ( I - PI2)~a ~2~Fl(a)D(~ Q* } 

+nTr(2){v,=,D + n(1 - /~ ,2)Tr(3)T } (74) 
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Here J1 is defined by 

J1 I f ' ]  = Tr(2, 3){v,2, Wl2[Co]~2aoGa3co,2 - ~o,3GwT3 - wz3G~o~3 + Gloom'z} 

(7s) 
In the last term of Eq. (74) we use Eq. (70); then Eqs. (60) and (69) 

yield 

Tr(2){Vl2,D + n(1 - / ; , 2 ) T r ( 3 ) r  } 

= Tr(2) { vl2, f2 + n Tr(3) T } 

_ 0 [Tr(2)f2 + �89 + {Tr(2)f 2 + �89 
0t 

- n2Tr(2){ R[ f ' ]  + S[ f ' ,  f2]}  (76) 

We extend the definition (47) o f f  1 to 

f ' =  r 1 -  n Tr(2)D - �89  

= F I - n T r ( 2 ) f  2 + �89 (77) 

Then Eq. (74) becomes the desired kinetic equation for f l ,  

Ofl/Ot + { f ' , H , }  = nJo[ f  I ] + n2J,[ f  '] + n2B[f  ' ] + n 2 C [ f ' , f  2] (78) 

Here B and C are defined by 

BIT']  -- - T r ( 2 ) R [ f ' ]  

~ 1 2 , 

- Tr(2)S[ f ' ,  f ' ]  

The coupled kinetic equations (69) and (78) describe the gas as a 
reacting mixture of atoms and diatomic molecules. In the absence of bound 
states, ww*= 1 and J~ reduces to the usual triple-collision operator of 
dense-gas theory. The explicit dependence of the collision operators on the 
various scattering and reaction amplitudes will not be worked out here; this 
has been done elsewherd 2~ for the related operator which occurs in the 
density expansion of a Green-Kubo  formula. However, it may be noted 
that 

u3. = v3~. (80) 

is equivalent to the Lovelace (2~) expression for the transition operator 
between channels 1,2 and a. Hence in Eq. (71) for S the term with a = 1,2 
corresponds to scattering while the terms with a = 1,3 and a = 2, 3 describe 
rearrangement collisions. Other terms in the various collision operators can 
be characterized in a similar way. 
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5. DISCUSSION 

The procedure described above follows the lines of the density expan- 
sion for monatomic gases, with a modification of the molecular chaos 
condition to accomodate the existence of bound states. The projection of 
F 2 on the subspace for free particles is expressed in the usual product form, 
while the projections of F 3 on the three-body channel subspaces are written 
as products of the density matrices for the atoms a n d / o r  molecules in the 
channel. The long-time limiting process then converges to yield F 2 and F 3 
as time-independent functionals of the density matrices for atoms and 
molecules. This results in coupled kinetic equations which describe the gas 
as a reacting mixture. 

The third order, which has not been worked out here, would provide a 
description of the molecular processes which can occur in a system of four 
particles, including collisions between two diatomic molecules, and between 
an atom and a triatomic molecule. The divergence mentioned in the 
Introduction occurs in this order, and it is not clear to what extent the 
bound-state contributions are affected. Undoubtedly scattering, say, of two 
diatomic molecules, will give finite contributions since the available phase 
space is essentially that for two particles. However, a collision with four 
particles in the initial or final state (such as breakup of two diatomic 
molecules) may result in a divergence. 

This derivation of kinetic equations from the density expansion has 
several advantages over previous work on polyatomic gases. All terms 
occurring at a given order in the density are retained in a consistent way. In 
addition, the various scattering channels are explicitly taken into account, 
so that all scattering and reaction processes which occur are treated 
together in a unified manner. Furthermore, it has not been necessary to 
impose any special restrictions on the form of the molecular density matrix. 
Diagonality assumptions in particular have been avoided; this is desirable 
since the fluxes of energy and momentum (and, in a mixture, of particle 
number) are in fact not diagonal (indeed they even have elements which 
mix free and bound states), and it follows that a nonequilibrium process 
will induce nondiagonal elements in the density matrix. 

APPENDIX 

The molecular chaos assumption (39) for F 2 is to be substituted into 
Eq. (7) for Fl(t) and the resulting equation solved for Fl(t0). This yields 

F'(t0) = S~(1)F l(t) - n Tr(2) 

• (S~(1 ,2 ) [Sz (1 ,2 ) -  So(1,2)](1 - f f~2)S~(l ,Z)F'( l , t )r l (2,  t) 

+ [ S J ( 1 , 2 ) -  S~(1,2)]D(1,Z, t))  + . . .  (81) 
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(Here the S's are evaluated at time t'.) This and Eq. (56) is to be inserted 
into Eq. (7) for F2(t). The result is a long expression in which the leading 
terms are those given by Eq. (44). For some of the terms in this expression 
the limit t ~ ~ can be taken with the aid of the formulas already given for 
the wave operators. Other terms depend on operators defined by 

a'~ = lira U3(t ) U~)(t) (82) 

for which existence of the (strong) limit has been proven by Hack. (22) For 
the adjoint of the above product, the limit exists only on the range of f~,  
and 

lira U(~)(t)U~(t)ff~ = 1 (83) 

These operators satisfy 

a2eo  = ao 

a2 = a~ + ao(0* (84) 

' , '  ~ e o  + ~o(0J f l ~ =  

It is straightforward to reduce the limiting form for F 2 to the expres- 
sion given in the text, plus a term X which is given by 

X = lim[ n Tr(3)(1 - /~,2)  

X { - (012G(0~2 + U( 12) 

[ * �9 - -  "t- (013(013 U ~  G U o ( 0 1 3 ~ o 1 3  x ~o~2~ U~ GUoflofio * * * 

-]- * * * (023(023v~ 6 Vo(0~(0~ - y~ aoa* V~o>F' ( ~) D ( ,~) Vo> a~a* 
ot 

+ U~,3yFi(2)D(I, 3) U(,3) 

+ U~23)F'(1)D(2,3)U(23) - U, TU3]U~,2)} ] (85) 

The remaining task is to show that X vanishes. First we have 
�9 , * * * * 

hm U(12)~o~2o U~ -- lira U(IE)U~UoU~o~ o UaU ~ = (0x2 
(86) 

�9 * * * * lira U(,z~O,3(0,3U ~ = lira U(12)U~UoU~]3~(0,3(0]3U(13>U~) = (0,2 

Using these and related formulas, one can show that the terms in X which 
depend on G cancel. Next we have 

lira U ( ~ ) ~  U~B ) = lim U(r U3U~B ) 
= o , , o  o , o ,  = ~o~L (87) 

Consequently in the sum over a, the terms with a =/= 1, 2 drop out, while the 
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term with a = 1, 2 is canceled by the operator 1 - P12. We are left with 

X = lira n Tr(3)(1 - if,2) U(,2)[ U~,3)F'(2)D (1, 3) U(,3) 

+ U~23)FL(1)D(2, 3) U(23) - U~ TU3] U~,2) (88) 

Now 

* = = ( 8 9 )  lim U~I3)U~12)w12 lim el3e~) UoU~12)r (o13 

The product U~I2)U~13) does not have a strong limit. However, if a weak 
limit is taken, it yields a factor in the first term above of ~0~3D(l, 3)o~,3, and 
this vanishes because of Eq. (36). It can be seen in a similar way that the 
other terms have a weak limit which vanishes. If D and T in the molecular 
chaos assumptions (39) and (56) are replaced by PDP and QTQ, then the 
limits exist in the strong topology, and the same kinetic equations for f l  
and f2 are obtained. However, the formulas relating f t and f2 to F '  and F 2 
appear not to be as convenient. 

NOTE ADDED IN PROOF 

After submission of the manuscript a paper by Y. L. Klimontovich 
and D. Kremp, Physica (Utrecht) 109A:517 (1981), appeared in which the 
same problem is treated. Their approach is similar to the one used here, but 
they consider only the spatially homogeneous case. 
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